

ANNA UNIVERSITY, CHENNAI NON- AUTONOMOUS AFFILIATED COLLEGES REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM

B.E. COMPUTER SCIENCE AND ENGINEERING

I.PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates can

- Apply their technical competence in computer science to solve real world problems, with technical and people leadership.
- Conduct cutting edge research and develop solutions on problems of social relevance.
- Work in a business environment, exhibiting team skills, work ethics, adaptability and lifelong learning.

II.PROGRAM OUTCOMES (POs)

- 1 **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2 **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3 **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4 **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6 **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7 **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8 **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9 **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10 **Communication:** Communicate effectively on complex engineering activities with the

- engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11 **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12 **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

III.PROGRAM SPECIFIC OUTCOMES (PSOs)

The Students will be able to

- Exhibit design and programming skills to build and automate business solutions using cutting edge technologies.
- Strong theoretical foundation leading to excellence and excitement towards research, to provide elegant solutions to complex problems.
- Ability to work effectively with various engineering fields as a team to design, build and develop system applications.

ANNA UNIVERSITY, CHENNAI NON- AUTONOMOUS AFFILIATED COLLEGES REGULATIONS 2021

B. E. COMPUTER SCIENCE AND ENGINEERING CHOICE BASED CREDIT SYSTEM

CURRICULA FOR SEMESTERS I TO VIII AND SYLLABI FOR SEMESTERS III AND IV SEMESTER I

S. NO.	COURSE	COURSE TITLE	CATE- GORY	PER	RIODS WEEK		TOTAL CONTACT	CREDITS
NO.	CODE		GORT	L	Т	Р	PERIODS	
1.	IP3151	Induction Programme	-	-	-	-	-	0
THEO	RY							
2.	HS3151	Professional English - I	HSMC	3	0	0	3	3
3.	MA3151	Matrices and Calculus	BSC	3	1	0	4	4
4.	PH3151	Engineering Physics	BSC	3	0	0	3	3
5.	CY3151	Engineering Chemistry	BSC	3	0	0	3	3
6.	GE3151	Problem Solving and Python Programming	ESC	3	0	0	3	3
7.	GE3152	அறிவியல் தமிழ் /Scientific Thoughts in Tamil	HSMC	61	0	0	1	1
PRAC	TICALS				- 1			
8.	GE3171	Problem Solving and Python Programming Laboratory	ESC	0	0	4	4	2
9.	BS3171	Physics and Chemistry Laboratory	BSC	0	0	4	4	2
10.	GE3172	English Laboratory \$	EEC	0	0	2	2	1
			TOTAL	16	1	10	27	22

\$ Skill Based Course

SEMESTER II

S. NO.	COURSE	COURSE TITLE	CATE- GORY		RIODS I WEEK		TOTAL CONTACT	CREDITS
NO.	CODE		GUKT		Т	Р	PERIODS	
THEO	RY				- 4		/	
1.	HS3251	Professional English - II	HSMC	2	0	0	2	2
2.	MA3251	Statistics and Numerical Methods	BSC	3	1	0	4	4
3.	PH3256	Physics for Information Science	BSC	3	0	0	3	3
4.	BE3251	Basic Electrical and Electronics Engineering	ESC	3	0	0	3	3
5.	GE3251	Engineering Graphics	ESC	2	0	4	6	4
6.	CS3251	Programming in C	PCC	3	0	0	3	3
7.	GE3252	தமிழர் மரபு /Heritage of Tamils	HSMC	1	0	0	1	1
8.		NCC Credit Course Level 1#	-	2	0	0	2	2#
PRAC	TICALS							
9.	GE3271	Engineering Practices Laboratory	ESC	0	0	4	4	2
10.	CS3271	Programming in C Laboratory	PCC	0	0	4	4	2
11.	. GE3272 Communication Laboratory / Foreign Language \$		EEC	0	0	4	4	2
		·	TOTAL	17	1	16	34	26

NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA. \$ Skill Based Course

SEMESTER III

S.	COURSE	COURSE TITLE	CATE			ODS VEEK	TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	PERIODS	
THEC	DRY							
1.	MA3354	Discrete Mathematics	BSC	3	1	0	4	4
2.	CS3352	Digital Principles and Computer Organization	ESC	3	0	2	5	4
3.	CS3353	Foundations of Data Science	PCC	3	0	0	3	3
4.	CS3351	Data Structures	PCC	3	0	0	3	3
5.	CS3391	Object Oriented Programming	PCC	3	0	0	3	3
PRAC	CTICALS							
6.	CS3361	Data Structures Laboratory	PCC	0	0	3	3	1.5
7.	CS3381	Object Oriented Programming Laboratory	PCC	0	0	3	3	1.5
8.	CS3362	Data Science Laboratory	PCC	0	0	4	4	2
9.	GE3361	Professional Development ^{\$}	EEC	0	0	2	2	1
		14	30	23				

^{\$} Skill Based Course

SEMESTER IV

S.	COURSE	COURSE TITLE	CATE			ODS /EEK	TOTAL CONTACT	CREDITS
NO.	CODE	/	GORY	L	Т	Р	PERIODS	
THEC	DRY							
1.	CS3452	Theory of Computation	PCC	3	0	0	3	3
2.	CS3491	Artificial Intelligence and Machine Learning	PCC	3	0	2	5	4
3.	CS3492	Database Management Systems	PCC	3	0	0	3	3
4.	CS3401	Algorithms	PCC	3	0	2	5	4
5.	CS3451	Introduction to Operating Systems	PCC	3	0	0	3	3
6.	GE3451	Environmental Sciences and Sustainability	BSC	2	0	0	2	2
7.		NCC Credit Course Level 2#		3	0	0	3	3 #
PRAC	CTICALS		•	,				
8.	CS3461	Operating Systems Laboratory	PCC	0	0	3	3	1.5
9.	CS3481	Database Management Systems Laboratory	PCC	0	0	3	3	1.5
			TOTAL	20	0	10	30	22

^{*} NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

SEMESTER V

S. NO.	COURSE TITLE		CATE		IODS WEE	PER K	TOTAL CONTACT	CREDITS	
NO.	CODE	GONT		L	Т	Р	PERIODS		
THEC	THEORY								
1.	CS3591	Computer Networks	PCC	3	0	2	5	4	
2.	CS3501	Compiler Design	PCC	3	0	2	5	4	
3.	CB3491	Cryptography and Cyber	PCC	3	0	0	3	3	
		Security	1 00)	J))		
4.	CS3551	Distributed Computing	PCC	3	0	0	3	3	
5.		Professional Elective I	PEC	-	-	-	-	3	
6.		Professional Elective II	PEC	-	-	-	-	3	
7.		Mandatory Course-I&	MC	3	0	0	3	0	
			TOTAL	•	-	•	-	20	

[&] Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-I)

SEMESTER VI

S. NO.	COURSE	COURSE TITLE	CATE GORY		PERIODS PER WEEK L T P		TOTAL CONTACT PERIODS	CREDITS	
THEC	THEORY								
1.	CCS356	Object Oriented Software Engineering	PCC	3	0	2	5	4	
2.	CS3691	Embedded Systems and IoT	PCC	3	0	2	5	4	
3.		Open Elective – I*	OEC	3	0	0	3	3	
4.		Professional Elective III	PEC	7	-	-	-	3	
5.		Professional Elective IV	PEC	-	-	- 1	-	3	
6.		Professional Elective V	PEC	-	<i>J-</i>	-	-	3	
7.		Professional Elective VI	PEC	F,	-	-	7) -	3	
8.		Mandatory Course-II &	MC	3	0	0	3	0	
9.		NCC Credit Course Level 3#		3	0	0	3	3 #	
	TOTAL								

^{*}Open Elective - I Shall be chosen from the list of open electives offered by other Programmes

[&] Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-II)

^{*} NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VII / VIII*

S. NO.	COURSE	COURSE TITLE	CATE		RIO R WE	_	TOTAL CONTACT	CREDITS		
140.	CODE		GOKT	L	Т	Р	PERIODS			
THE	THEORY									
1.	GE3791	Human Values and Ethics	HSMC	2	0	0	2	2		
2.		Management – Elective#	HSMC	3	0	0	3	3		
3.		Open Elective – II**	OEC	3	0	0	3	3		
4.		Open Elective – III**	OEC	3	0	0	3	3		
5.		Open Elective – IV**	OEC	3	0	0	3	3		
PRA	CTICALS									
6.	CS3711	Summer internship	EEC	0 0 0		0	0	2		
		14	16							

^{*}If students undergo internship in Semester VII, then the courses offered during semester VIII will be offered during semester VIII.

SEMESTER VIII /VII*

S. NO	COURSE CODE	COURSE TITLE	CATE		PERIODS PER WEEK L T P		TOTAL CONTACT PERIODS	CREDITS
PRA	CTICALS					14	- L	
1.	CS3811	Project Work/Internship	EEC	0	0	20	20	10
			TOTAL	0	0	20	20	10

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

TOTAL CREDITS: 162

MANAGEMENT - ELECTIVE

		BDACDECC THE	MALICA	MIN	M		DOE	
S. NO.	COURSE CODE	COURSE TITLE	CATE		RIOI RWI	DS EEK	TOTAL CONTACT	CREDITS
NO.			GUKT	L	Т	Р	PERIODS	
1.	GE3751	Principles of Management	HSMC	3	0	0	3	3
2.	GE3752	Total Quality Management	HSMC	3	0	0	3	3
3.	GE3753	Engineering Economics and Financial Accounting	HSMC	3	0	0	3	3
4.	GE3754	Human Resource Management	HSMC	3	0	0	3	3
5.	GE3755	Knowledge Management	HSMC	3	0	0	3	3
6.	GE3792	Industrial Management	HSMC	3	0	0	3	3

^{**} Open Elective II - IV (Shall be chosen from the list of open electives offered by other Programmes).

^{*} Management – Elective shall be chosen from the Management Elective courses.

MANDATORY COURSES I

S. NO.	COURSE	COURSE TITLE	CATE			TOTAL CONTACT	CREDITS	
NO.	CODE		GORY L T P		PERIODS			
1.	MX3081	Introduction to Women and Gender Studies	MC	3	0	0	3	0
2.	MX3082	Elements of Literature	MC	3	0	0	3	0
3.	MX3083	Film Appreciation	MC	3	0	0	3	0
4.	MX3084	Disaster Management	MC	3	0	0	3	0

MANDATORY COURSES II

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS
1.	MX3085	Well Being with traditional practices (Yoga, Ayurveda and Siddha)	МС	3	0	0	3	0
2.	MX3086	History of Science and Technology in India	MC	3	0	0	3	0
3.	MX3087	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0
4.	MX3088	State, Nation Building and Politics in India	МС	3	0	0	3	0
5.	MX3089	Industrial Safety	МС	3	0	0	3	0

PROGRESS THROUGH KNOWLEDGE

PROFESSIONAL ELECTIVE COURSES: VERTICALS

Vertical I Data Science	Vertical II Full Stack Development	Vertical III Cloud Computing and Data Centre Technologies	Vertical IV Cyber Security and Data Privacy	Vertical V Creative Media	Vertical VI Emerging Technologies	Vertical VII Artificial Intelligence and Machine Learning
Exploratory Data Analysis	Web Technologies	Cloud Computing	Ethical Hacking	Augmented Reality/Virtual Reality	Augmented Reality/Virtual Reality	Knowledge Engineering
Recommender Systems	App Development	Virtualization	Digital and Mobile Forensics	Multimedia and Animation	Robotic Process Automation	Soft Computing
Neural Networks and Deep Learning	Cloud Services Management	Cloud Services Management	Social Network Security	Video Creation and Editing	Neural Networks and Deep Learning	Neural Networks and Deep Learning
Text and Speech Analysis	UI and UX Design	Data Warehousing	Modern Cryptography	UI and UX Design	Cyber security	Text and Speech Analysis
Business Analytics	Software Testing and Automation	Storage Technologies	Engineering Secure software systems	Digital marketing	Quantum Computing	Optimization Techniques
Image and video analytics	Web Application Security	Software Defined Networks	Cryptocurrency and Blockchain Technologies	Visual Effects	Cryptocurrency and Blockchain Technologies	Game Theory
Computer Vision	Dev-ops	Stream Processing	Network Security	Game Development	Game Development	Cognitive Science
Big Data Analytics	Principles of Programming Languages	Security and Privacy in Cloud	Security and Privacy in Cloud	Multimedia Data Compression and Storage	3D Printing and Design	Ethics And Al

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VI. These courses are listed in groups called verticals that represent a particular area of specialisation / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree refer to the Regulations 2021, Clause 4.10.

_

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL 1: DATA SCIENCE

S. NO.	COURSE	COURSE COURSE TITLE CATE GORY			ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GORT	L	T	Р	PERIODS	
1.	CCS346	Exploratory Data Analysis	PEC	2	0	2	4	3
2.	CCS360	Recommender Systems	PEC	2	0	2	4	3
3.	CCS355	Neural Networks and Deep Learning	PEC	2	0	2	4	3
4.	CCS369	Text and Speech Analysis	PEC	2	0	2	4	3
5.	CCW331	Business Analytics	PEC	2	0	2	4	3
6.	CCS349	Image and video analytics	PEC	2	0	2	4	3
7.	CCS338	Computer Vision	PEC	2	0	2	4	3
8.	CCS334	Big Data Analytics	PEC	2	0	2	4	3

VERTICAL 2: FULL STACK DEVELOPMENT

S. NO.	COURSE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODE	1 1 2	GUKT	L	Т	Р	PERIODS	
1.	CCS375	Web Technologies	PEC	2	0	2	4	3
2.	CCS332	App Development	PEC	2	0	2	4	3
3.	CCS336	Cloud Services Management	PEC	2	0	2	4	3
4.	CCS370	UI and UX Design	PEC	2	0	2	4	3
5.	CCS366	Software Testing and Automation	PEC	2	0	2	4	3
6.	CCS374	Web Application Security	PEC	2	0	2	4	3
7.	CCS342	Dev-ops	PEC	2	0	2	4	3
8.	CCS358	Principles of Programming Languages	PEC	2	0	2	4	3

VERTICAL 3: CLOUD COMPUTING AND DATA CENTRE TECHNOLOGIES

S.	COURSE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	T	Р	PERIODS	
1.	CCS335	Cloud Computing	PEC	2	0	2	4	3
2.	CCS372	Virtualization	PEC	2	0	2	4	3
3.	CCS336	Cloud Services Management	PEC	2	0	2	4	3
4.	CCS341	Data Warehousing	PEC	2	0	2	4	3
5.	CCS367	Storage Technologies	PEC	3	0	0	3	3
6.	CCS365	Software Defined Networks	PEC	2	0	2	4	3
7.	CCS368	Stream Processing	PEC	2	0	2	4	3
8.	CCS362	Security and Privacy in Cloud	PEC	2	0	2	4	3

VERTICAL 4: CYBER SECURITY AND DATA PRIVACY

S. NO.	COURSE	COURSE TITLE	CATE GORY		PERIODS PER WEEK		TOTAL CONTACT	CREDITS			
NO.	CODL		GOKT	L	T	Р	PERIODS				
1.	CCS344	Ethical Hacking	PEC	2	0	2	4	3			
2.	CCS343	Digital and Mobile Forensics	PEC	2	0	2	4	3			
3.	CCS363	Social Network Security	PEC	2	0	2	4	3			
4.	CCS351	Modern Cryptography	PEC	2	0	2	4	3			
5.	CB3591	Engineering Secure Software Systems	PEC	2	0	2	4	3			
6.	CCS339	Cryptocurrency and Blockchain Technologies	PEC	2	0	2	4	3			
7.	CCS354	Network Security	PEC	2	0	2	4	3			
8.	CCS362	Security and Privacy in Cloud	PEC	2	0	2	4	3			

VERTICAL 5: CREATIVE MEDIA

S.	COURSE	COURSE COURSE TITLE CATE GORY			ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GOKT	L	T	Р	PERIODS	
1.	CCS333	Augmented Reality/Virtual Reality	PEC	2	0	2	4	3
2.	CCS352	Multimedia and Animation	PEC	2	0	2	4	3
3.	CCS371	Video Creation and Editing	PEC	2	0	2	4	3
4.	CCS370	UI and UX Design	PEC	2	0	2	4	3
5.	CCW332	Digital marketing	PEC	2	0	2	4	3
6.	CCS373	Visual Effects	PEC	2	0	2	4	3
7.	CCS347	Game Development	PEC	2	0	2	4	3
8.	CCS353	Multimedia Data Compression and Storage	PEC	2	0	2	4	3

VERTICAL 6: EMERGING TECHNOLOGIES

S. NO.	COURSE COURSE TITLE CATE GORY				ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GURT	L	Т	Р	PERIODS	
1.	CCS333	Augmented Reality/Virtual Reality	PEC	2	0	2	4	3
2.	CCS361	Robotic Process Automation	PEC	2	0	2	4	3
3.	CCS355	Neural Networks and Deep Learning	PEC	2	0	2	4	3
4.	CCS340	Cyber security	PEC	2	0	2	0 6 4	3
5.	CCS359	Quantum Computing	PEC	2	0	2	4	3
6.	CCS339	Cryptocurrency and Blockchain Technologies	PEC	2	0	2	4	3
7.	CCS347	Game Development	PEC	2	0	2	4	3
8.	CCS331	3D Printing and Design	PEC	2	0	2	4	3

VERTICAL 7: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

SL. NO.	COURSE	COURSE TITLE	SE TITLE CATE GORY		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GOKI	L	T	Р	PERIODS	
1.	CCS350	Knowledge Engineering	PEC	2	0	2	4	3
2.	CCS364	Soft Computing	PEC	2	0	2	4	3
3.	CCS355	Neural Networks and Deep Learning	PEC	2	0	2	4	3
4.	CCS369	Text and Speech Analysis	PEC	2	0	2	4	3
5.	CCS357	Optimization Techniques	PEC	2	0	2	4	3
6.	CCS348	Game Theory	PEC	2	0	2	4	3
7.	CCS337	Cognitive Science	PEC	2	0	2	4	3
8.	CCS345	Ethics And Al	PEC	2	0	2	4	3

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

OPEN ELECTIVES - I

S.	COURSE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE	フ 1 1 1 1 1 1 1 1 1 1 1 1 1	GORY	L	Т	Р	PERIODS	
1.	OAS351	Space Science	OEC	3	0	0	3	3
2.	OIE351	Introduction to Industrial Engineering	OEC	3	0	0	3	3
3.	OBT351	Climate Change and its Impact	OEC	3	0	0	3	3
4.	OCE351	Environment and Social Impact Assessment	OEC	3	0	0	3	3
5.	OEE351	Renewable Energy System	OEC	3	0	0	3	3
6.	OEI351	Introduction to Industrial Instrumentation and Control	OEC	3	0	0	3	3
7.	OMA351	Graph Theory	OEC	3	0	0	3	3

OPEN ELECTIVES - II

SL.	COURSE CODE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	OIE352	Resource Management Techniques	OEC	3	0	0	3	3
2.	OMG351	Fintech Regulations	OEC	3	0	0	3	3
3.	OFD351	Holistic Nutrition	OEC	3	0	0	3	3
4.	OCE352	ICT in Agriculture	OEC	3	0	0	3	3
5.	OEI352	Introduction to Control Engineering	OEC	3	0	0	3	3
6.	OPY351	Pharmaceutical Nanotechnology	OEC	3	0	0	3	3
7.	OAE351	Aviation Management	OEC	3	0	0	3	3

OPEN ELECTIVES – III

SL. NO.	COURSE CODE	COURSE TITLE	CATE	PE	R W	EEK	TOTAL	CREDITS
				L	Т	Р	PERIODS	_
1.	OHS351	English for Competitive Examinations	OEC	3	0	0	3	3
2.	OMG352	NGOs and Sustainable Development	OEC	3	0	0	3	3
3.	OMG353	Democracy and Good Governance	OEC	3	0	0	3	3
4.	OME353	Renewable Energy Technologies	OEC	3	0	0	3	3
5.	OME354	Applied Design Thinking	OEC	2	0	2	4	3
6.	OMF351	Reverse Engineering	OEC	3	0	0	3	3
7.	OMF353	Sustainable Manufacturing	OEC	3	0	0	3	3
8.	OAU351	Electric and Hybrid Vehicle	OEC	3	0	0	3	3
9.	OAS352	Space Engineering	OEC	3	0	0	3	3
10.	OIM351	Industrial Management	OEC	3	0	0	3	3
11.	OIE354	Quality Engineering	OEC	3	0	0	3	3
12.	OSF351	Fire Safety Engineering	OEC	3	0	0	3	3
13.	OML351	Introduction to non-destructive testing	OEC	3	0	0	3	3
14.	OMR351	Mechatronics	OEC	3	0	0	3	3
15.	ORA351	Foundation of Robotics	OEC	3	0	0	3	3
16.	OAE352	Fundamentals of Aeronautical engineering	OEC	3	0	0	3	3
17.	OGI351	Remote Sensing Concepts	OEC	3	0	0	3	3
18.	OAI351	Urban Agriculture	OEC	3	0	0	3	3
19.	OEN351	Drinking Water Supply and Treatment	OEC	3	0	0	3	3
20.	OEE352	Electric Vehicle technology	OEC	3	0	0	3	3
21.	OEI353	Introduction to PLC Programming	OEC	3	0	0	3	3

22	0011054	Nana Taskaslasu.	OFO	_		^	2	2
22.	OCH351	Nano Technology	OEC	3	0	0	3	3
23.	OCH352	Functional Materials	OEC	3	0	0	3	3
24.	OBT352	Biomedical Instrumentation	OEC	3	0	0	3	3
25.	OFD352	Traditional Indian Foods	OEC	3	0	0	3	3
26.	OFD353	Introduction to food processing	OEC	3	0	0	3	3
27.	OPY352	IPR for Pharma Industry	OEC	3	0	0	3	3
28.	OTT351	Basics of Textile Finishing	OEC	3	0	0	3	3
29.	OTT352	Industrial Engineering for Garment Industry	OEC	3	0	0	3	3
30.	OTT353	Basics of Textile Manufacture	OEC	3	0	0	3	3
31.	OPE351	Introduction to Petroleum Refining and Petrochemicals	OEC	3	0	0	3	3
32.	OPE352	Energy Conservation and Management	OEC	3	0	0	3	3
33.	OPT351	Basics of Plastics Processing	OEC	3	0	0	3	3
34.	OEC351	Signals and Systems	OEC	3	0	0	3	3
35.	OEC352	Fundamentals of Electronic Devices and Circuits	OEC	3	0	0	3	3
36.	OBM351	Foundation Skills in integrated product Development	OEC	3	0	0	3	3
37.	OBM352	Assistive Technology	OEC	3	0	0	3	3
38.	OMA352	Operations Research	OEC	3	0	0	3	3
39.	OMA353	Algebra and Number Theory	OEC	3	0	0	3	3
40.	OMA354	Linear Algebra	OEC	3	0	0	3	3
41.	OCE353	Lean Concepts, Tools And Practices	OEC	3	0	0	3	3

OPEN ELECTIVES - IV

SL.	COURSE CODE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	OHS352	Project Report Writing	OEC	3	0	0	3	3
2.	OMA355	Advanced Numerical Methods	OEC	3	0	0	3	3
3.	OMA356	Random Processes	OEC	3	0	0	3	3
4.	OMA357	Queuing and Reliability Modelling	OEC	3	0	0	3	3
5.	OMG354	Production and Operations Management for Entrepreneurs	OEC	3	0	0	3	3
6.	OMG355	Multivariate Data Analysis	OEC	3	0	0	3	3
7.	OME352	Additive Manufacturing	OEC	3	0	0	3	3
8.	OME353	New Product Development	OEC	3	0	0	3	3
9.	OME355	Industrial Design & Rapid Prototyping Techniques	OEC	2	0	2	4	3
10.	OMF352	Micro and Precision Engineering	OEC	3	0	0	3	3

11.	OMF354	Cost Management of Engineering Projects	OEC	3	0	0	3	3
12.	OAU352	Batteries and Management system	OEC	3	0	0	3	3
13.	OAU353	Sensors and Actuators	OEC	3	0	0	3	3
14.	OAS353	Space Vehicles	OEC	3	0	0	3	3
15.	OIM352	Management Science	OEC	3	0	0	3	3
16.	OIM353	Production Planning and Control	OEC	3	0	0	3	3
17.	OIE353	Operations Management	OEC	3	0	0	3	3
18.	OSF352	Industrial Hygiene	OEC	3	0	0	3	3
19.	OSF353	Chemical Process Safety	OEC	3	0	0	3	3
20.	OML352	Electrical, Electronic and Magnetic materials	OEC	3	0	0	3	3
21.	OML353	Nanomaterials and applications	OEC	3	0	0	3	3
22.	OMR352	Hydraulics and Pneumatics	OEC	3	0	0	3	3
23.	OMR353	Sensors	OEC	3	0	0	3	3
24.	ORA352	Foundation of Automation	OEC	3	0	0	3	3
25.	ORA353	Concepts in Mobile Robotics	OEC	3	0	0	3	3
26.	OMV351	Marine Propulsion	OEC	3	0	0	3	3
27.	OMV352	Marine Merchant Vehicles	OEC	3	0	0	3	3
28.	OMV353	Elements of Marine Engineering	OEC	3	0	0	3	3
29.	OAE353	Drone Technologies	OEC	3	0	0	3	3
30.	OGI352	Geographical Information System	OEC	3	0	0	3	3
31.	OAI352	Agriculture Entrepreneurship Development	OEC	3	0	0	3	3
32.	OEN352	Biodiversity Conservation	OEC	3	0	0	3	3
33.	OEE353	Introduction to control systems	OEC	3	0	0	3	3
34.	OEI354	Introduction to Industrial Automation Systems	OEC	3	0	0	3	3
35.	OCH353	Energy Technology	OEC	3	0	0	3	3
36.	OCH354	Surface Science	OEC	3	0	0	3	3
37.	OBT353	Environment and Agriculture	OEC	3	0	0	3	3
38.	OFD354	Fundamentals of Food Engineering	OEC	3	0	0	3	3
39.	OFD355	Food safety and Quality Regulations	OEC	3	0	0	3	3
40.	OPY353	Nutraceuticals	OEC	3	0	0	3	3
41.	OTT354	Basics of Dyeing and Printing	OEC	3	0	0	3	3
42.	OTT355	Fibre Science	OEC	3	0	0	3	3
43.	OTT356	Garment Manufacturing Technology	OEC	3	0	0	3	3
44.	OPE353	Industrial safety	OEC	3	0	0	3	3
45.	OPE354	Unit Operations in Petro Chemical Industries	OEC	3	0	0	3	3

46.	OPT352	Plastic Materials for	OEC	3	0	0	3	3
		Engineers						
47.	OPT353	Properties and Testing of	OEC	3	0	0	3	3
		Plastics						
48.	OEC353	VLSI Design	OEC	3	0	0	3	3
49.	OEC354	Industrial IoT and Industry 4.0	OEC	2	0	2	4	3
50.	OBM353	Wearable devices	OEC	3	0	0	3	3
51.	OBM354	Medical Informatics	OEC	3	0	0	3	3
52.	OCE354	Basics of Integrated Water	OEC	3	0	0	3	3
		Resources Management						

SUMMARY

	Name	e of the	Program	me: B.E.	Comput	er Scienc	ce and E	ngineerin	ıg	
S.No	Subject Area		Credits per Semester							Total Credits
		ı	II	TU	IV	V	VI	VII/VIII	VIII/VII	Credits
1	HSMC	4	3	7-		2.77	\sim	5		12
2	BSC	12	7	4	2		9/	7		25
3	ESC	5	9	4			1			18
4	PCC	- 7	5	14	20	14	8	N		61
5	PEC					6	12			18
6	OEC						3	9		12
7	EEC	1	2	1	TYE		/	2	10	16
8	Non-Credit /(Mandatory)	5					1	2		
	Total	22	26	23	22	20	23	16	10	162
		1.137	/Unic	10 111	(0.0.0	THIN		0.5		

ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor Degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 of Regulations 2021.

<u>VERTICALS FOR MINOR DEGREE</u> (In addition to all the verticals of other programmes)

Vertical I Fintech and Block Chain	Vertical II Entrepreneurship	Vertical III Public Administration	Vertical IV Business Data Analytics	Vertical V Environmental and Sustainability
Financial Management	Foundations of Entrepreneurship	Principles of Public Administration	Statistics for Management	Sustainable infrastructure Development
Fundamentals of Investment	Team Building & Leadership Management for Business	Constitution of India	Datamining for Business Intelligence	Sustainable Agriculture and Environmental Management
Banking, Financial Services and Insurance	Creativity & Innovation in Entrepreneurship	Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials
Introduction to Blockchain and its Applications	Principles of Marketing Management for Business	Administrative Theories	Marketing and Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurs	Indian Administrative System	Operation and Supply Chain Analytics	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis
-	7.1	重量	7 · [Integrated Energy Planning for Sustainable Development
-			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Energy Efficiency for Sustainable Development

PROGRESS THROUGH KNOWLEDGE

(choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

VERTICAL 1: FINTECH AND BLOCK CHAIN

S. NO.	TOURSE III E		PERIODS PER WEEK			TOTAL CONTACT	CREDITS	
NO.	CODE		GOKT	L	T	Р	PERIODS	
1.	CMG331	Financial Management	PEC	3	0	0	3	3
2.	CMG332	Fundamentals of Investment	PEC	3	0	0	3	3
3.	CMG333	Banking, Financial Services and Insurance	PEC	3	0	0	3	3
4.	CMG334	Introduction to Blockchain and its Applications	PEC	3	0	0	3	3
5.	CMG335	Fintech Personal Finance and Payments	PEC	3	0	0	3	3
6.	CMG336	Introduction to Fintech	PEC	3	0	0	3	3

VERTICAL 2: ENTREPRENEURSHIP

S. NO.	COURSE COURSE TITLE CATE GORY			PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE	lesses and	GORT	L	Т	Р	PERIODS	
1.	CMG337	Foundations of Entrepreneurship	PEC	3	0	0	3	3
2.	CMG338	Team Building & Leadership Management for Business	PEC	3	0	0	3	3
3.	CMG339	Creativity & Innovation in Entrepreneurship	PEC	3	0	0	3	3
4.	CMG340	Principles of Marketing Management For Business	PEC	3	0	0	3	3
5.	CMG341	Human Resource Management for Entrepreneurs	PEC	3	0	0	DG F ₃	3
6.	CMG342	Financing New Business Ventures	PEC	3	0	0	3	3

VERTICAL 3: PUBLIC ADMINISTRATION

S. NO.	COURSE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE		GUKT	L	Т	Р	PERIODS	
1.	CMG343	Principles of Public Administration	PEC	3	0	0	3	3
2.	CMG344	Constitution of India	PEC	3	0	0	3	3
3.	CMG345	Public Personnel Administration	PEC	3	0	0	3	3
4.	CMG346	Administrative Theories	PEC	3	0	0	3	3
5.	CMG347	Indian Administrative System	PEC	3	0	0	3	3
6.	CMG348	Public Policy Administration	PEC	3	0	0	3	3

VERTICAL 4: BUSINESS DATA ANALYTICS

S. NO.	COURSE CODE	COURSE TITLE	CATE PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS		
1.	CMG349	Statistics for Management	PEC	3	0	0	3	3
2.	CMG350	Datamining For Business Intelligence	PEC	3	0	0	3	3
3.	CMG351	Human Resource Analytics	PEC	3	0	0	3	3
4.	CMG352	Marketing And Social Media Web Analytics	PEC	3	0	0	3	3
5.	CMG353	Operation And Supply Chain Analytics	PEC	3	0	0	3	3
6.	CMG354	Financial Analytics	PEC	3	0	0	3	3

VERTICAL 5: ENVIRONMENTAL AND SUSTAINABILITY

S.	COURSE IIII E			PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE		GORT	L	Т	Р	PERIODS	
1.	CES331	Sustainable infrastructure Development	PEC	3	0	0	3	3
2.	CES332	Sustainable Agriculture and Environmental Management	PEC	3	0	0	3	3
3.	CES333	Sustainable Bio Materials	PEC	3	0	0	3	3
4.	CES334	Materials for Energy Sustainability	PEC	3	0	0	3	3
5.	CES335	Green Technology	PEC	3	0	0	3	3
6.	CES336	Environmental Quality Monitoring and Analysis	PEC	3	0	0	3	3
7.	CES337	Integrated Energy Planning for Sustainable Development	PEC	3	0	0	3	3
8.	CES338	Energy Efficiency for Sustainable Development	PEC	3	0	0	3	3

MA3354

DISCRETE MATHEMATICS

L T P C 3 1 0 4

COURSE OBJECTIVES:

- To extend student's logical and mathematical maturity and ability to deal with abstraction.
- To introduce most of the basic terminologies used in computer science courses and application of ideas to solve practical problems.
- To understand the basic concepts of combinatorics and graph theory.
- To familiarize the applications of algebraic structures.
- To understand the concepts and significance of lattices and boolean algebra which are widely used in computer science and engineering.

UNIT I LOGIC AND PROOFS

9+3

Propositional logic – Propositional equivalences - Predicates and quantifiers – Nested quantifiers – Rules of inference - Introduction to proofs – Proof methods and strategy.

UNIT II COMBINATORICS

9+3

Mathematical induction – Strong induction and well ordering – The basics of counting – The pigeonhole principle – Permutations and combinations – Recurrence relations – Solving linear recurrence relations – Generating functions – Inclusion and exclusion principle and its applications.

UNIT III GRAPHS

9+3

Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.

UNIT IV ALGEBRAIC STRUCTURES

9+3

Algebraic systems – Semi groups and monoids - Groups – Subgroups – Homomorphism's – Normal subgroup and cosets – Lagrange's theorem – Definitions and examples of Rings and Fields.

UNIT V LATTICES AND BOOLEAN ALGEBRA

9+3

TOTAL: 60 PERIODS

Partial ordering – Posets – Lattices as posets – Properties of lattices - Lattices as algebraic systems – Sub lattices – Direct product and homomorphism – Some special lattices – Boolean algebra – Sub Boolean Algebra – Boolean Homomorphism.

COURSE OUTCOMES:

At the end of the course, students would:

CO1:Have knowledge of the concepts needed to test the logic of a program.

CO2:Have an understanding in identifying structures on many levels.

CO3:Be aware of a class of functions which transform a finite set into another finite set which relates to input and output functions in computer science.

CO4:Be aware of the counting principles.

CO5:Be exposed to concepts and properties of algebraic structures such as groups, rings and fields.

TEXT BOOKS:

- 1. Rosen. K.H., "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2017.
- 2. Tremblay. J.P. and Manohar. R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011.

REFERENCES:

- 1. Grimaldi. R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5thEdition, Pearson Education Asia, Delhi, 2013.
- 2. Koshy. T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.
- 3. Lipschutz. S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.

CS3352 DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

LTPC

3 0 2 4

COURSE OBJECTIVES:

- To analyze and design combinational circuits.
- To analyze and design sequential circuits
- To understand the basic structure and operation of a digital computer.
- To study the design of data path unit, control unit for processor and to familiarize with the hazards.
- To understand the concept of various memories and I/O interfacing.

UNIT I COMBINATIONAL LOGIC

9

Combinational Circuits – Karnaugh Map - Analysis and Design Procedures – Binary Adder – Subtractor – Decimal Adder - Magnitude Comparator – Decoder – Encoder – Multiplexers - Demultiplexers

UNIT II SYNCHRONOUS SEQUENTIAL LOGIC

9

Introduction to Sequential Circuits – Flip-Flops – operation and excitation tables, Triggering of FF, Analysis and design of clocked sequential circuits – Design – Moore/Mealy models, state minimization, state assignment, circuit implementation - Registers – Counters.

UNIT III COMPUTER FUNDAMENTALS

9

Functional Units of a Digital Computer: Von Neumann Architecture – Operation and Operands of Computer Hardware Instruction – Instruction Set Architecture (ISA): Memory Location, Address and Operation – Instruction and Instruction Sequencing – Addressing Modes, Encoding of Machine Instruction – Interaction between Assembly and High Level Language.

UNIT IV PROCESSOR

9

Instruction Execution – Building a Data Path – Designing a Control Unit – Hardwired Control, Microprogrammed Control – Pipelining – Data Hazard – Control Hazards.

UNIT V MEMORY AND I/O

9

Memory Concepts and Hierarchy – Memory Management – Cache Memories: Mapping and Replacement Techniques – Virtual Memory – DMA – I/O – Accessing I/O: Parallel and Serial Interface – Interrupt I/O – Interconnection Standards: USB, SATA

45 PERIODS

PRACTICAL EXERCISES:

30 PERIODS

- 1. Verification of Boolean theorems using logic gates.
- 2. Design and implementation of combinational circuits using gates for arbitrary functions.
- 3. Implementation of 4-bit binary adder/subtractor circuits.
- **4.** Implementation of code converters.
- 5. Implementation of BCD adder, encoder and decoder circuits
- 6. Implementation of functions using Multiplexers.
- **7.** Implementation of the synchronous counters
- **8.** Implementation of a Universal Shift register.
- 9. Simulator based study of Computer Architecture

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Design various combinational digital circuits using logic gates

CO2: Design sequential circuits and analyze the design procedures

CO3: State the fundamentals of computer systems and analyze the execution of an instruction

CO4: Analyze different types of control design and identify hazards

CO5: Identify the characteristics of various memory systems and I/O communication

TOTAL: 75 PERIODS

TEXT BOOKS:

- 1. M. Morris Mano, Michael D. Ciletti, "Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog", Sixth Edition, Pearson Education, 2018.
- 2. David A. Patterson, John L. Hennessy, "Computer Organization and Design, The Hardware/Software Interface", Sixth Edition, Morgan Kaufmann/Elsevier, 2020.

REFERENCES:

- 1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian, "Computer Organization and Embedded Systems", Sixth Edition, Tata McGraw-Hill, 2012.
- 2. William Stallings, "Computer Organization and Architecture Designing for Performance", Tenth Edition, Pearson Education, 2016.
- 3. M. Morris Mano, "Digital Logic and Computer Design", Pearson Education, 2016.

CS3353

FOUNDATIONS OF DATA SCIENCE

LTPC

COURSE OBJECTIVES:

- To understand the data science fundamentals and process.
- To learn to describe the data for the data science process.
- To learn to describe the relationship between data.

- To utilize the Python libraries for Data Wrangling.
- To present and interpret data using visualization libraries in Python

UNIT I INTRODUCTION

9

Data Science: Benefits and uses – facets of data - Data Science Process: Overview – Defining research goals – Retrieving data – Data preparation - Exploratory Data analysis – build the model– presenting findings and building applications - Data Mining - Data Warehousing – Basic Statistical descriptions of Data

UNIT II DESCRIBING DATA

9

Types of Data - Types of Variables -Describing Data with Tables and Graphs –Describing Data with Averages - Describing Variability - Normal Distributions and Standard (z) Scores

UNIT III DESCRIBING RELATIONSHIPS

9

Correlation –Scatter plots –correlation coefficient for quantitative data –computational formula for correlation coefficient – Regression –regression line –least squares regression line – Standard error of estimate – interpretation of r2 –multiple regression equations –regression towards the mean

UNIT IV PYTHON LIBRARIES FOR DATA WRANGLING

9

Basics of Numpy arrays –aggregations –computations on arrays –comparisons, masks, boolean logic – fancy indexing – structured arrays – Data manipulation with Pandas – data indexing and selection – operating on data – missing data – Hierarchical indexing – combining datasets – aggregation and grouping – pivot tables

UNIT V DATA VISUALIZATION

9

Importing Matplotlib – Line plots – Scatter plots – visualizing errors – density and contour plots – Histograms – legends – colors – subplots – text and annotation – customization – three dimensional plotting - Geographic Data with Basemap - Visualization with Seaborn.

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Define the data science process

CO2: Understand different types of data description for data science process

CO3: Gain knowledge on relationships between data

CO4: Use the Python Libraries for Data Wrangling

CO5: Apply visualization Libraries in Python to interpret and explore data

TOTAL:45 PERIODS

TEXT BOOKS

- **1.** David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016. (Unit I)
- 2. Robert S. Witte and John S. Witte, "Statistics", Eleventh Edition, Wiley Publications, 2017. (Units II and III)
- 3. Jake VanderPlas, "Python Data Science Handbook", O'Reilly, 2016. (Units IV and V)

REFERENCES:

1. Allen B. Downey, "Think Stats: Exploratory Data Analysis in Python", Green Tea Press, 2014.

COURSE OBJECTIVES:

- To understand the concepts of ADTs.
- To Learn linear data structures lists, stacks, and queues.
- To understand non-linear data structures trees and graphs.
- To understand sorting, searching and hashing algorithms.
- To apply Tree and Graph structures.

UNIT I LISTS 9

Abstract Data Types (ADTs) – List ADT – Array-based implementation – Linked list implementation – Singly linked lists – Circularly linked lists – Doubly-linked lists – Applications of lists – Polynomial ADT – Radix Sort – Multilists.

UNIT II STACKS AND QUEUES

9

Stack ADT – Operations – Applications – Balancing Symbols – Evaluating arithmetic expressions- Infix to Postfix conversion – Function Calls – Queue ADT – Operations – Circular Queue – DeQueue – Applications of Queues.

UNIT III TREES 9

Tree ADT – Tree Traversals - Binary Tree ADT – Expression trees – Binary Search Tree ADT – AVL Trees – Priority Queue (Heaps) – Binary Heap.

UNIT IV MULTIWAY SEARCH TREES AND GRAPHS

9

B-Tree - B+ Tree - Graph Definition - Representation of Graphs - Types of Graph - Breadth-first traversal - Depth-first traversal - Bi-connectivity - Euler circuits - Topological Sort - Dijkstra's algorithm - Minimum Spanning Tree - Prim's algorithm - Kruskal's algorithm

UNIT V SEARCHING, SORTING AND HASHING TECHNIQUES

9

Searching – Linear Search – Binary Search. Sorting – Bubble sort – Selection sort – Insertion sort – Shell sort –. Merge Sort – Hashing – Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extendible Hashing.

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Define linear and non-linear data structures.

CO2: Implement linear and non–linear data structure operations.

CO3: Use appropriate linear/non–linear data structure operations for solving a given problem.

CO4: Apply appropriate graph algorithms for graph applications.

CO5: Analyze the various searching and sorting algorithms.

TOTAL:45 PERIODS

TEXT BOOKS

- 1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd Edition, Pearson Education, 2005.
- 2. Kamthane, Introduction to Data Structures in C, 1st Edition, Pearson Education, 2007

REFERENCES

- 1. Langsam, Augenstein and Tanenbaum, Data Structures Using C and C++, 2nd Edition, Pearson Education, 2015.
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, Introduction to Algorithms", Fourth Edition, Mcgraw Hill/ MIT Press, 2022.
- 3. Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft , Data Structures and Algorithms, 1st edition, Pearson, 2002.
- 4. Kruse, Data Structures and Program Design in C, 2nd Edition, Pearson Education, 2006.

CS3391

OBJECT ORIENTED PROGRAMMING

LTPC

COURSE OBJECTIVES:

- To understand Object Oriented Programming concepts and basics of Java programming language
- To know the principles of packages, inheritance and interfaces
- To develop a java application with threads and generics classes
- To define exceptions and use I/O streams
- To design and build Graphical User Interface Application using JAVAFX

UNIT I INTRODUCTION TO OOP AND JAVA

9

Overview of OOP – Object oriented programming paradigms – Features of Object Oriented Programming – Java Buzzwords – Overview of Java – Data Types, Variables and Arrays – Operators – Control Statements – Programming Structures in Java – Defining classes in Java – Constructors-Methods -Access specifiers - Static members- Java Doc comments

UNIT II INHERITANCE, PACKAGES AND INTERFACES

9

Overloading Methods – Objects as Parameters – Returning Objects – Static, Nested and Inner Classes. Inheritance: Basics – Types of Inheritance - Super keyword - Method Overriding – Dynamic Method Dispatch – Abstract Classes – final with Inheritance. Packages and Interfaces: Packages – Packages and Member Access – Importing Packages – Interfaces.

UNIT III EXCEPTION HANDLING AND MULTITHREADING

9

Exception Handling basics – Multiple catch Clauses – Nested try Statements – Java's Built-in Exceptions – User defined Exception. Multithreaded Programming: Java Thread Model–Creating a Thread and Multiple Threads – Priorities – Synchronization – Inter Thread Communication- Suspending – Resuming, and Stopping Threads – Multithreading. Wrappers – Auto boxing.

UNIT IV I/O, GENERICS, STRING HANDLING

9

I/O Basics – Reading and Writing Console I/O – Reading and Writing Files. Generics: Generic Programming – Generic classes – Generic Methods – Bounded Types – Restrictions and Limitations. Strings: Basic String class, methods and String Buffer Class.

UNIT V JAVAFX EVENT HANDLING, CONTROLS AND COMPONENTS

JAVAFX Events and Controls: Event Basics – Handling Key and Mouse Events. Controls: Checkbox, ToggleButton – RadioButtons – ListView – ComboBox – ChoiceBox – Text Controls – ScrollPane. Layouts – FlowPane – HBox and VBox – BorderPane – StackPane – GridPane. Menus – Basics – Menu – Menu bars – Menultem.

COURSE OUTCOMES:

On completion of this course, the students will be able to

CO1:Apply the concepts of classes and objects to solve simple problems

CO2:Develop programs using inheritance, packages and interfaces

CO3:Make use of exception handling mechanisms and multithreaded model to solve real world problems

CO4:Build Java applications with I/O packages, string classes, Collections and generics concepts **CO5:**Integrate the concepts of event handling and JavaFX components and controls for developing GUI based applications

TOTAL:45 PERIODS

TEXT BOOKS:

- 1. Herbert Schildt, "Java: The Complete Reference", 11 th Edition, McGraw Hill Education, New Delhi, 2019
- 2. Herbert Schildt, "Introducing JavaFX 8 Programming", 1 st Edition, McGraw Hill Education, New Delhi, 2015

REFERENCE:

1. Cay S. Horstmann, "Core Java Fundamentals", Volume 1, 11 th Edition, Prentice Hall, 2018.

CS3361

DATA STRUCTURES LABORATORY

L T P C 0 0 3 1.5

COURSE OBJECTIVES:

- To demonstrate array implementation of linear data structure algorithms.
- To implement the applications using Stack.
- To implement the applications using Linked list
- To implement Binary search tree and AVL tree algorithms.
- To implement the Heap algorithm.
- To implement Dijkstra's algorithm.
- To implement Prim's algorithm
- To implement Sorting, Searching and Hashing algorithms.

LIST OF EXERCISES:

- 1. Array implementation of Stack, Queue and Circular Queue ADTs
- 2. Implementation of Singly Linked List
- 3. Linked list implementation of Stack and Linear Queue ADTs
- 4. Implementation of Polynomial Manipulation using Linked list
- 5. Implementation of Evaluating Postfix Expressions, Infix to Postfix conversion

27

- 6. Implementation of Binary Search Trees
- 7. Implementation of AVL Trees
- 8. Implementation of Heaps using Priority Queues
- 9. Implementation of Dijkstra's Algorithm
- 10. Implementation of Prim's Algorithm
- 11. Implementation of Linear Search and Binary Search
- 12. Implementation of Insertion Sort and Selection Sort
- 13. Implementation of Merge Sort
- 14. Implementation of Open Addressing (Linear Probing and Quadratic Probing)

TOTAL:45 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Implement Linear data structure algorithms.

CO2: Implement applications using Stacks and Linked lists

CO3: Implement Binary Search tree and AVL tree operations.

CO4: Implement graph algorithms.

CO5: Analyze the various searching and sorting algorithms.

CS3381

OBJECT ORIENTED PROGRAMMING LABORATORY

L T P C 0 0 3 1.5

COURSE OBJECTIVES:

- To build software development skills using java programming for real-world applications.
- To understand and apply the concepts of classes, packages, interfaces, inheritance, exception handling and file processing.
- To develop applications using generic programming and event handling

LIST OF EXPERIMENTS:

- 1. Solve problems by using sequential search, binary search, and quadratic sorting algorithms (selection, insertion)
- 2. Develop stack and queue data structures using classes and objects.
- 3. Develop a java application with an Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club funds. Generate pay slips for the employees with their gross and net salary.
- 4. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named printArea(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method printArea() that prints the area of the given shape.
- 5. Solve the above problem using an interface.
- 6. Implement exception handling and creation of user defined exceptions.

- 7. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.
- 8. Write a program to perform file operations.
- 9. Develop applications to demonstrate the features of generics classes.
- 10. Develop applications using JavaFX controls, layouts and menus.
- 11. Develop a mini project for any application using Java concepts.

Lab Requirements: for a batch of 30 students

Operating Systems: Linux / Windows

Front End Tools: Eclipse IDE / Netbeans IDE

COURSE OUTCOMES:

On completion of this course, the students will be able to

CO1: Design and develop java programs using object oriented programming concepts

CO2: Develop simple applications using object oriented concepts such as package, exceptions

CO3: Implement multithreading, and generics concepts

CO4: Create GUIs and event driven programming applications for real world problems

CO5: Implement and deploy web applications using Java

CS3362

DATA SCIENCE LABORATORY

 Γ

TOTAL: 45 PERIODS

COURSE OBJECTIVES:

- To understand the python libraries for data science
- To understand the basic Statistical and Probability measures for data science.
- To learn descriptive analytics on the benchmark data sets.
- To apply correlation and regression analytics on standard data sets.
- To present and interpret data using visualization packages in Python.

LIST OF EXPERIMENTS: ROG RESS THROUGH KNOWLED GE

- 1. Download, install and explore the features of NumPy, SciPy, Jupyter, Statsmodels and Pandas packages.
- 2. Working with Numpy arrays
- 3. Working with Pandas data frames
- 4. Reading data from text files, Excel and the web and exploring various commands for doing descriptive analytics on the Iris data set.
- 5. Use the diabetes data set from UCI and Pima Indians Diabetes data set for performing the following:
 - a. Univariate analysis: Frequency, Mean, Median, Mode, Variance, Standard Deviation, Skewness and Kurtosis.
 - b. Bivariate analysis: Linear and logistic regression modeling
 - c. Multiple Regression analysis
 - d. Also compare the results of the above analysis for the two data sets.

- 6. Apply and explore various plotting functions on UCI data sets.
 - a. Normal curves
 - b. Density and contour plots
 - c. Correlation and scatter plots
 - d. Histograms
 - e. Three dimensional plotting
- 7. Visualizing Geographic Data with Basemap

LIST OF EQUIPMENTS: (30 Students per Batch)

Tools: Python, Numpy, Scipy, Matplotlib, Pandas, statmodels, seaborn, plotly, bokeh

Note: Example data sets like: UCI, Iris, Pima Indians Diabetes etc.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Make use of the python libraries for data science

CO2: Make use of the basic Statistical and Probability measures for data science.

CO3: Perform descriptive analytics on the benchmark data sets.

CO4: Perform correlation and regression analytics on standard data sets

CO5: Present and interpret data using visualization packages in Python.

CS3452

THEORY OF COMPUTATION

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand foundations of computation including automata theory
- To construct models of regular expressions and languages.
- To design context free grammar and push down automata
- To understand Turing machines and their capability
- To understand Undecidability and NP class problems

UNIT I AUTOMATA AND REGULAR EXPRESSIONS

9

Need for automata theory - Introduction to formal proof – Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non-deterministic Finite Automata (NFA) – Equivalence between NFA and DFA – Finite Automata with Epsilon transitions – Equivalence of NFA and DFA- Equivalence of NFAs with and without ϵ -moves- Conversion of NFA into DFA – Minimization of DFAs.

UNIT II REGULAR EXPRESSIONS AND LANGUAGES

9

Regular expression – Regular Languages- Equivalence of Finite Automata and regular expressions – Proving languages to be not regular (Pumping Lemma) – Closure properties of regular languages.

UNIT III CONTEXT FREE GRAMMAR AND PUSH DOWN AUTOMATA

9

Types of Grammar - Chomsky's hierarchy of languages -Context-Free Grammar (CFG) and Languages - Derivations and Parse trees - Ambiguity in grammars and languages - Push Down Automata (PDA): Definition - Moves - Instantaneous descriptions -Languages of pushdown automata - Equivalence of pushdown automata and CFG-CFG to PDA-PDA to CFG - Deterministic Pushdown Automata.

UNIT IV NORMAL FORMS AND TURING MACHINES

9

Normal forms for CFG – Simplification of CFG- Chomsky Normal Form (CNF) and Greibach Normal Form (GNF) – Pumping lemma for CFL – Closure properties of Context Free Languages –Turing Machine: Basic model – definition and representation – Instantaneous Description – Language acceptance by TM – TM as Computer of Integer functions – Programming techniques for Turing machines (subroutines).

UNIT V UNDECIDABILITY

9

Unsolvable Problems and Computable Functions –PCP-MPCP- Recursive and recursively enumerable languages – Properties - Universal Turing machine -Tractable and Intractable problems - P and NP completeness – Kruskal's algorithm – Travelling Salesman Problem- 3-CNF SAT problems.

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Construct automata theory using Finite Automata

CO2: Write regular expressions for any pattern

CO3: Design context free grammar and Pushdown Automata

CO4: Design Turing machine for computational functions

CO5: Differentiate between decidable and undecidable problems

TOTAL:45 PERIODS

TEXT BOOKS:

- 1. Hopcroft J.E., Motwani R. & Ullman J.D., "Introduction to Automata Theory, Languages and Computations", 3rd Edition, Pearson Education, 2008.
- 2. John C Martin, "Introduction to Languages and the Theory of Computation", 4th Edition, Tata McGraw Hill, 2011.

REFERENCES:

- 1. Harry R Lewis and Christos H Papadimitriou, "Elements of the Theory of Computation", 2nd Edition, Prentice Hall of India, 2015.
- 2. Peter Linz, "An Introduction to Formal Language and Automata", 6th Edition, Jones & Bartlett, 2016.
- 3. K.L.P.Mishra and N.Chandrasekaran, "Theory of Computer Science: Automata Languages and Computation", 3rd Edition, Prentice Hall of India, 2006.

CS3491 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

LTPC

3024

COURSE OBJECTIVES:

The main objectives of this course are to:

- Study about uninformed and Heuristic search techniques.
- Learn techniques for reasoning under uncertainty
- Introduce Machine Learning and supervised learning algorithms
- Study about ensembling and unsupervised learning algorithms
- Learn the basics of deep learning using neural networks

UNIT I PROBLEM SOLVING

Introduction to AI - AI Applications - Problem solving agents – search algorithms – uninformed search strategies – Heuristic search strategies – Local search and optimization problems – adversarial search – constraint satisfaction problems (CSP)

UNIT II PROBABILISTIC REASONING

9

9

Acting under uncertainty – Bayesian inference – naïve bayes models. Probabilistic reasoning – Bayesian networks – exact inference in BN – approximate inference in BN – causal networks.

UNIT III SUPERVISED LEARNING

9

Introduction to machine learning – Linear Regression Models: Least squares, single & multiple variables, Bayesian linear regression, gradient descent, Linear Classification Models: Discriminant function – Probabilistic discriminative model - Logistic regression, Probabilistic generative model – Naive Bayes, Maximum margin classifier – Support vector machine, Decision Tree, Random forests

UNIT IV ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING

9

Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting, stacking, Unsupervised learning: K-means, Instance Based Learning: KNN, Gaussian mixture models and Expectation maximization

UNIT V NEURAL NETWORKS

9

Perceptron - Multilayer perceptron, activation functions, network training - gradient descent optimization - stochastic gradient descent, error backpropagation, from shallow networks to deep networks -Unit saturation (aka the vanishing gradient problem) - ReLU, hyperparameter tuning, batch normalization, regularization, dropout.

45 PERIODS 30 PERIODS

PRACTICAL EXERCISES:

- 1. Implementation of Uninformed search algorithms (BFS, DFS)
- 2. Implementation of Informed search algorithms (A*, memory-bounded A*)
- 3. Implement naïve Bayes models
- 4. Implement Bayesian Networks
- 5. Build Regression models
- 6. Build decision trees and random forests
- 7. Build SVM models
- 8. Implement ensembling techniques
- 9. Implement clustering algorithms
- 10. Implement EM for Bayesian networks
- 11. Build simple NN models
- 12. Build deep learning NN models

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Use appropriate search algorithms for problem solving

CO2: Apply reasoning under uncertainty

CO3: Build supervised learning models

CO4: Build ensembling and unsupervised models **CO5:** Build deep learning neural network models

TOTAL:75 PERIODS

TEXT BOOKS:

- 1. Stuart Russell and Peter Norvig, "Artificial Intelligence A Modern Approach", Fourth Edition, Pearson Education, 2021.
- 2. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.

REFERENCES:

- 1. Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems", Pearson Education, 2007
- 2. Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw Hill, 2008
- 3. Patrick H. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006
- 4. Deepak Khemani, "Artificial Intelligence", Tata McGraw Hill Education, 2013 (http://nptel.ac.in/)
- 5. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 6. Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.
- 7. Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014
- 8. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.
- 9. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016

CS3492

DATABASE MANAGEMENT SYSTEMS

LTPC

3 0 0 3

COURSE OBJECTIVES:

- To learn the fundamentals of data models, relational algebra and SQL
- To represent a database system using ER diagrams and to learn normalization techniques
- To understand the fundamental concepts of transaction, concurrency and recovery processing
- To understand the internal storage structures using different file and indexing techniques which will help in physical DB design
- To have an introductory knowledge about the Distributed databases, NOSQL and database security

UNIT I RELATIONAL DATABASES

10

Purpose of Database System – Views of data – Data Models – Database System Architecture – Introduction to relational databases – Relational Model – Keys – Relational Algebra – SQL fundamentals – Advanced SQL features – Embedded SQL– Dynamic SQL

UNIT II DATABASE DESIGN

8

Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping – Functional Dependencies – Non-loss Decomposition – First, Second, Third Normal Forms, Dependency

Preservation – Boyce/Codd Normal Form – Multi-valued Dependencies and Fourth Normal Form – Join Dependencies and Fifth Normal Form

UNIT III TRANSACTIONS

9

Transaction Concepts – ACID Properties – Schedules – Serializability – Transaction support in SQL – Need for Concurrency – Concurrency control –Two Phase Locking- Timestamp – Multiversion – Validation and Snapshot isolation– Multiple Granularity locking – Deadlock Handling – Recovery Concepts – Recovery based on deferred and immediate update – Shadow paging – ARIES Algorithm

UNIT IV IMPLEMENTATION TECHNIQUES

9

RAID – File Organization – Organization of Records in Files – Data dictionary Storage – Column Oriented Storage – Indexing and Hashing –Ordered Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing – Query Processing Overview – Algorithms for Selection, Sorting and join operations – Query optimization using Heuristics - Cost Estimation.

UNIT V ADVANCED TOPICS

9

Distributed Databases: Architecture, Data Storage, Transaction Processing, Query processing and optimization – NOSQL Databases: Introduction – CAP Theorem – Document Based systems – Key value Stores – Column Based Systems – Graph Databases. Database Security: Security issues – Access control based on privileges – Role Based access control – SQL Injection – Statistical Database security – Flow control – Encryption and Public Key infrastructures – Challenges

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

CO1:Construct SQL Queries using relational algebra

CO2:Design database using ER model and normalize the database

CO3: Construct queries to handle transaction processing and maintain consistency of the database

CO4: Compare and contrast various indexing strategies and apply the knowledge to tune the performance of the database

CO5: Appraise how advanced databases differ from Relational Databases and find a suitable database for the given requirement.

PROGRESS THROUGH KNOWLEDGE TOTAL:45 PERIODS

TEXT BOOKS:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Seventh Edition, McGraw Hill, 2020.
- 2. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Seventh Edition, Pearson Education, 2017

REFERENCES:

1. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.

COURSE OBJECTIVES:

- To understand and apply the algorithm analysis techniques on searching and sorting algorithms
- To critically analyze the efficiency of graph algorithms
- To understand different algorithm design techniques
- To solve programming problems using state space tree
- To understand the concepts behind NP Completeness, Approximation algorithms and randomized algorithms.

UNIT I INTRODUCTION

9

Algorithm analysis: Time and space complexity - Asymptotic Notations and its properties Best case, Worst case and average case analysis – Recurrence relation: substitution method - Lower bounds – **searching:** linear search, binary search and Interpolation Search, **Pattern search:** The naïve stringmatching algorithm - Rabin-Karp algorithm - Knuth-Morris-Pratt algorithm. **Sorting:** Insertion sort – heap sort

UNIT II GRAPH ALGORITHMS

9

Graph algorithms: Representations of graphs - Graph traversal: DFS - BFS - applications - Connectivity, strong connectivity, bi-connectivity - Minimum spanning tree: Kruskal's and Prim's algorithm - Shortest path: Bellman-Ford algorithm - Dijkstra's algorithm - Floyd-Warshall algorithm Network flow: Flow networks - Ford-Fulkerson method - Matching: Maximum bipartite matching

UNIT III ALGORITHM DESIGN TECHNIQUES

9

Divide and Conquer methodology: Finding maximum and minimum - Merge sort - Quick sort **Dynamic programming**: Elements of dynamic programming — Matrix-chain multiplication - Multi stage graph — Optimal Binary Search Trees. **Greedy Technique**: Elements of the greedy strategy - Activity-selection problem — Optimal Merge pattern — Huffman Trees.

UNIT IV STATE SPACE SEARCH ALGORITHMS

g

Backtracking: n-Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem - Graph colouring problem **Branch and Bound**: Solving 15-Puzzle problem - Assignment problem - Knapsack Problem - Travelling Salesman Problem

UNIT V NP-COMPLETE AND APPROXIMATION ALGORITHM

9

Tractable and intractable problems: Polynomial time algorithms – Venn diagram representation - NP-algorithms - NP-hardness and NP-completeness – Bin Packing problem - Problem reduction: TSP – 3-CNF problem. **Approximation Algorithms**: TSP - **Randomized Algorithms**: concept and application - primality testing - randomized quick sort - Finding kth smallest number

45 PERIODS 30 PERIODS

PRACTICAL EXERCISES:

Searching and Sorting Algorithms

1. Implement Linear Search. Determine the time required to search for an element. Repeat the experiment for different values of *n*, the number of elements in the list to be searched and plot a graph of the time taken versus *n*.

- 2. Implement recursive Binary Search. Determine the time required to search an element. Repeat the experiment for different values of *n*, the number of elements in the list to be searched and plot a graph of the time taken versus *n*.
- 3. Given a text txt [0...n-1] and a pattern pat [0...m-1], write a function search (char pat [], char txt []) that prints all occurrences of pat [] in txt []. You may assume that n > m.
- 4. Sort a given set of elements using the Insertion sort and Heap sort methods and determine the time required to sort the elements. Repeat the experiment for different values of *n*, the number of elements in the list to be sorted and plot a graph of the time taken versus *n*.

Graph Algorithms

- 1. Develop a program to implement graph traversal using Breadth First Search
- 2. Develop a program to implement graph traversal using Depth First Search
- 3. From a given vertex in a weighted connected graph, develop a program to find the shortest paths to other vertices using Dijkstra's algorithm.
- 4. Find the minimum cost spanning tree of a given undirected graph using Prim's algorithm.
- 5. Implement Floyd's algorithm for the All-Pairs- Shortest-Paths problem.
- 6. Compute the transitive closure of a given directed graph using Warshall's algorithm.

Algorithm Design Techniques

- 1. Develop a program to find out the maximum and minimum numbers in a given list of *n* numbers using the divide and conquer technique.
- 2. Implement Merge sort and Quick sort methods to sort an array of elements and determine the time required to sort. Repeat the experiment for different values of *n*, the number of elements in the list to be sorted and plot a graph of the time taken versus *n*.

State Space Search Algorithms

Implement N Queens problem using Backtracking.

Approximation Algorithms Randomized Algorithms

1. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.

TOTAL:75 PERIODS

2. Implement randomized algorithms for finding the kth smallest number.

The programs can be implemented in C/C++/JAVA/ Python.

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Analyze the efficiency of algorithms using various frameworks

CO2: Apply graph algorithms to solve problems and analyze their efficiency.

CO3: Make use of algorithm design techniques like divide and conquer, dynamic programming and greedy techniques to solve problems

CO4: Use the state space tree method for solving problems.

CO5: Solve problems using approximation algorithms and randomized algorithms

TEXT BOOKS:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", 3rd Edition, Prentice Hall of India, 2009.
- 2. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran "Computer Algorithms/C++" Orient Blackswan, 2nd Edition, 2019.

REFERENCES:

- 1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", 3rd Edition, Pearson Education, 2012.
- 2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Reprint Edition, Pearson Education, 2006.
- 3. S. Sridhar, "Design and Analysis of Algorithms", Oxford university press, 2014.

CS3451

INTRODUCTION TO OPERATING SYSTEMS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the basics and functions of operating systems.
- To understand processes and threads
- To analyze scheduling algorithms and process synchronization.
- To understand the concept of deadlocks.
- To analyze various memory management schemes.
- To be familiar with I/O management and file systems.
- To be familiar with the basics of virtual machines and Mobile OS like iOS and Android.

UNIT I INTRODUCTION

7

Computer System - Elements and organization; Operating System Overview - Objectives and Functions - Evolution of Operating System; Operating System Structures - Operating System Services - User Operating System Interface - System Calls - System Programs - Design and Implementation - Structuring methods.

UNIT II PROCESS MANAGEMENT

11

Processes - Process Concept - Process Scheduling - Operations on Processes - Inter-process Communication; CPU Scheduling - Scheduling criteria - Scheduling algorithms: Threads - Multithread Models - Threading issues; Process Synchronization - The Critical-Section problem - Synchronization hardware - Semaphores - Mutex - Classical problems of synchronization - Monitors; Deadlock - Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.

UNIT III MEMORY MANAGEMENT

10

Main Memory - Swapping - Contiguous Memory Allocation - Paging - Structure of the Page Table - Segmentation, Segmentation with paging; Virtual Memory - Demand Paging - Copy on Write - Page Replacement - Allocation of Frames - Thrashing.

UNIT IV STORAGE MANAGEMENT

10

Mass Storage system – Disk Structure - Disk Scheduling and Management; File-System Interface - File concept - Access methods - Directory Structure - Directory organization - File system mounting - File Sharing and Protection; File System Implementation - File System Structure - Directory implementation - Allocation Methods - Free Space Management; I/O Systems – I/O Hardware, Application I/O interface, Kernel I/O subsystem.

UNIT V VIRTUAL MACHINES AND MOBILE OS

7

Virtual Machines – History, Benefits and Features, Building Blocks, Types of Virtual Machines and their Implementations, Virtualization and Operating-System Components; Mobile OS - iOS and Android.

TOTAL:45 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Analyze various scheduling algorithms and process synchronization.

CO2: Explain deadlock prevention and avoidance algorithms.

CO3: Compare and contrast various memory management schemes.

CO4: Explain the functionality of file systems, I/O systems, and Virtualization

CO5: Compare iOS and Android Operating Systems.

TEXT BOOKS:

- 1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts" II, 10th Edition, John Wiley and Sons Inc., 2018.
- 2. Andrew S Tanenbaum, "Modern Operating Systems", Pearson, 5th Edition, 2022 New Delhi.

REFERENCES:

- 1. Ramaz Elmasri, A. Gil Carrick, David Levine, "Operating Systems A Spiral Approach", Tata McGraw Hill Edition, 2010.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 7th Edition, Prentice Hall, 2018.
- 3. Achyut S.Godbole, Atul Kahate, "Operating Systems", McGraw Hill Education, 2016.

GE3451 ENVIRONMENTAL SCIENCES AND SUSTAINABILITY

LTPC

2 0 0 2

UNIT I ENVIRONMENT AND BIODIVERSITY

6

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ.

UNIT II ENVIRONMENTAL POLLUTION

9

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

UNIT III RENEWABLE SOURCES OF ENERGY

6

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

UNIT IV SUSTAINABILITY AND MANAGEMENT

6

Development, GDP, Sustainability-concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT V SUSTAINABILITY PRACTICES

6

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cyclescarbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socioeconomical and technological change.

TOTAL: 30 PERIODS

TEXT BOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers .2018.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

REFERENCE BOOKS:

1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38 . edition 2010.

- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, Third Edition, 2015.
- 5. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 2013.

CS3461

OPERATING SYSTEMS LABORATORY

L I P C

COURSE OBJECTIVES:

- To install windows operating systems.
- To understand the basics of Unix command and shell programming.
- To implement various CPU scheduling algorithms.
- To implement Deadlock Avoidance and Deadlock Detection Algorithms
- To implement Page Replacement Algorithms
- To implement various memory allocation methods.
- To be familiar with File Organization and File Allocation Strategies.

LIST OF EXPERIMENTS:

- 1. Installation of windows operating system
- 2. Illustrate UNIX commands and Shell Programming
- 3. Process Management using System Calls: Fork, Exit, Getpid, Wait, Close
- 4. Write C programs to implement the various CPU Scheduling Algorithms
- 5. Illustrate the inter process communication strategy
- 6. Implement mutual exclusion by Semaphore
- 7. Write C programs to avoid Deadlock using Banker's Algorithm
- 8. Write a C program to Implement Deadlock Detection Algorithm
- 9. Write C program to implement Threading
- 10. Implement the paging Technique using C program
- 11. Write C programs to implement the following Memory Allocation Methods
 - a. First Fit
- b. Worst Fit
- c. Best Fit
- 12. Write C programs to implement the various Page Replacement Algorithms
- 13. Write C programs to Implement the various File Organization Techniques
- 14. Implement the following File Allocation Strategies using C programs
 - a. Sequential
- b. Indexed
- c. Linked
- 15. Write C programs for the implementation of various disk scheduling algorithms

16. Install any guest operating system like Linux using VMware.

TOTAL:45 PERIODS

COURSE OUTCOMES:

At th end of this course, the students will be able to:

CO1: Define and implement UNIX Commands.

CO2: Compare the performance of various CPU Scheduling Algorithms.

CO3: Compare and contrast various Memory Allocation Methods.

CO4: Define File Organization and File Allocation Strategies.

CO5: Implement various Disk Scheduling Algorithms.

CS3481 DATABASE MANAGEMENT SYSTEMS LABORATORY

L T P C 0 0 3 1.5

COURSE OBJECTIVES:

- To learn and implement important commands in SQL.
- To learn the usage of nested and joint queries.
- To understand functions, procedures and procedural extensions of databases.
- To understand design and implementation of typical database applications.
- To be familiar with the use of a front end tool for GUI based application development.

LIST OF EXPERIMENTS:

- 1. Create a database table, add constraints (primary key, unique, check, Not null), insert rows, update and delete rows using SQL DDL and DML commands.
- 2. Create a set of tables, add foreign key constraints and incorporate referential integrity.
- 3. Query the database tables using different 'where' clause conditions and also implement aggregate functions.
- 4. Query the database tables and explore sub queries and simple join operations.
- 5. Query the database tables and explore natural, equi and outer joins.
- 6. Write user defined functions and stored procedures in SQL.
- 7. Execute complex transactions and realize DCL and TCL commands.
- 8. Write SQL Triggers for insert, delete, and update operations in a database table.
- 9. Create View and index for database tables with a large number of records.
- 10. Create an XML database and validate it using XML schema.
- 11. Create Document, column and graph based data using NOSQL database tools.
- 12. Develop a simple GUI based database application and incorporate all the above-mentioned features
- Case Study using any of the real life database applications from the following list
 - a) Inventory Management for a EMart Grocery Shop
 - b) Society Financial Management
 - c) Cop Friendly App Eseva
 - d) Property Management eMall
 - e) Star Small and Medium Banking and Finance
 - Build Entity Model diagram. The diagram should align with the business and functional goals stated in the application.

- Apply Normalization rules in designing the tables in scope.
- Prepared applicable views, triggers (for auditing purposes), functions for enabling enterprise grade features.
- Build PL SQL / Stored Procedures for Complex Functionalities, ex EOD Batch Processing for calculating the EMI for Gold Loan for each eligible Customer.
- Ability to showcase ACID Properties with sample queries with appropriate settings

List of Equipments:(30 Students per Batch)

MYSQL / SQL : 30 Users

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Create databases with different types of key constraints.

CO2: Construct simple and complex SQL queries using DML and DCL commands.

CO3: Use advanced features such as stored procedures and triggers and incorporate in GUI based application development.

CO4: Create an XML database and validate with meta-data (XML schema).

CO5: Create and manipulate data using NOSQL database.

