

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai Accredited by NAAC with 'A' Grade #27, Thayanur, Tiruchirappalli - 620009

| S.No | Course                                            | RegulationOffered<br>SemesterSubject<br>Code |      |        | Subject<br>Name                              |
|------|---------------------------------------------------|----------------------------------------------|------|--------|----------------------------------------------|
| 1    | B.Tech. – Artificial                              | R-2017                                       | V    | OCE551 | Air Pollution and Control<br>Engineering     |
|      | Intelligence and Data Science                     | R-2021                                       | IV   | GE3451 | Environmental Sciences and<br>Sustainability |
| 2    | B.E – Civil Engineering                           | R 2021                                       | IV   | GE3451 | Environmental Sciences and<br>Sustainability |
|      | B.E –Computer Science                             |                                              | V    | OCE551 | Air Pollution and Control<br>Engineering     |
| 3    | and<br>Engineering                                | R-2017                                       | VII  | OCY751 | Waste Water Treatment                        |
|      |                                                   |                                              | VIII | GE8076 | Professional Ethics in Engineering           |
|      |                                                   | R-2017                                       | V    | OCE551 | Air Pollution and Control<br>Engineering     |
|      |                                                   | R-2017                                       | VII  | OCY751 | Waste Water Treatment                        |
| 4    | B.E –Electronics and<br>Communication Engineering | R 2021                                       | IV   | GE3451 | Environmental Sciences and<br>Sustainability |
|      |                                                   | R-2017                                       | VI   | MG8591 | Principles of Management                     |
|      |                                                   | R-2017                                       | VIII | GE8076 | Professional Ethics in Engineering           |
|      |                                                   |                                              | VII  | GE8077 | Total Quality Management                     |
|      |                                                   |                                              | VII  | GE8071 | Disaster Management                          |
| 5    | B.E – Mechanical                                  | R-2017                                       | V    | ORO551 | Renewable Energy Sources                     |
|      | Engineering                                       |                                              | VIII | MG8591 | Principles of Management                     |
|      |                                                   | R 2021                                       | IV   | GE3451 | Environmental Sciences and<br>Sustainability |

| 5   | 3 | 3 | 3 | 3 | 2   | 1 | 1 | - | - | - | 1 | 1 |
|-----|---|---|---|---|-----|---|---|---|---|---|---|---|
| Avg | 3 | 3 | 3 | 3 | 2.5 | 1 | 1 | - | - | - | 1 | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

### GE3451 ENVIRONMENTAL SCIENCES AND SUSTAINABILITY LTPC

2002

6

6

6

6

6

#### COURSE OBJECTIVES:

- To introduce the basic concepts of environment, ecosystems and biodiversity and emphasize on the biodiversity of India and its conservation.
- To impart knowledge on the causes, effects and control or prevention measures of environmental pollution and natural disasters.
- To facilitate the understanding of global and Indian scenario of renewable and nonrenewable resources, causes of their degradation and measures to preserve them.
- To familiarize the concept of sustainable development goals and appreciate the interdependence of economic and social aspects of sustainability, recognize and analyze climate changes, concept of carbon credit and the challenges of environmental management.
- To inculcate and embrace sustainability practices and develop a broader understanding on green materials, energy cycles and analyze the role of sustainable urbanization.

### UNIT I ENVIRONMENT AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness.Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ.

### UNIT II ENVIRONMENTAL POLLUTION

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

### UNIT III RENEWABLE SOURCES OF ENERGY

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

### UNIT IV SUSTAINABILITY AND MANAGEMENT

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

### UNIT V SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cyclescarbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socioeconomical and technological change.

#### MG8591

#### PRINCIPLES OF MANAGEMENT

#### **OBJECTIVE:**

• To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization .

#### UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

Definition of Management - Science or Art - Manager Vs Entrepreneur - types of managers managerial roles and skills - Evolution of Management - Scientific, human relations, system and contingency approaches - Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment - Current trends and issues in Management.

#### UNIT II PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting objectives - policies - Planning premises - Strategic Management - Planning Tools and Techniques – Decision making steps and process.

#### UNIT III ORGANISING

Nature and purpose - Formal and informal organization - organization chart - organization structure – types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization - Job Design - Human Resource Management - HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management

#### UNIT IV DIRECTING

Foundations of individual and group behaviour - motivation - motivation theories - motivational techniques - job satisfaction - job enrichment - leadership - types and theories of leadership communication – process of communication – barrier in communication – effective communication -communication and IT.

#### UNIT V CONTROLLING

System and process of controlling - budgetary and non-budgetary control techniques - use of computers and IT in Management control – Productivity problems and management – control and performance - direct and preventive control - reporting.

#### **TOTAL: 45 PERIODS**

#### OUTCOME:

- Upon completion of the course, students will be able to have clear understanding •
- Managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

#### **TEXTBOOKS:**

- 1. Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 10th Edition, 2009.
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education, 6th Edition, 2004.

#### **REFERENCES:**

- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" Pearson Education, 7th Edition, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata McGraw Hill, 1998.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999

2



9

LTPC 3003

9

### 9

# 9

### **TEXT BOOKS:**

- 1. Rafael C. Gonzalez, Richard E. Woods, 'Digital Image Processing', Pearson, Third Edition, 2010.
- 2. Anil K. Jain, 'Fundamentals of Digital Image Processing', Pearson, 2002.

### REFERENCES

- 1. Kenneth R. Castleman, 'Digital Image Processing', Pearson, 2006.
- 2. Rafael C. Gonzalez, Richard E. Woods, Steven Eddins, 'Digital Image Processing using MATLAB', Pearson Education, Inc., 2011.
- 3. D,E. Dudgeon and RM. Mersereau, 'Multidimensional Digital Signal Processing', Prentice Hall Professional Technical Reference, 1990.
- 4. William K. Pratt, 'Digital Image Processing', John Wiley, New York, 2002
- Milan Sonka et al 'Image processing, analysis and machine vision', Brookes/Cole, Vikas 5. Publishing House, 2nd edition, 1999.

#### **PROFESSIONAL ETHICS IN ENGINEERING** LT P C GE8076 3003

#### **OBJECTIVE:**

 To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

#### UNIT I HUMAN VALUES

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

#### UNIT II ENGINEERING ETHICS

Senses of 'Engineering Ethics' - Variety of moral issues - Types of inquiry - Moral dilemmas -Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories.

#### UNIT III **ENGINEERING AS SOCIAL EXPERIMENTATION**

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

#### UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk -Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest -Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) - Discrimination.

#### UNIT V **GLOBAL ISSUES**

Multinational Corporations - Environmental Ethics - Computer Ethics - Weapons Development -Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership –Code of Conduct – Corporate Social Responsibility.

### **TOTAL: 45 PERIODS**

3

10

# 9

# 8

9

#### OUTCOMES:

• Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

### **TEXT BOOKS:**

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

### **REFERENCES:**

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2013.
- 6. World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011.

#### Web sources:

- 1. www.onlineethics.org
- 2. www.nspe.org
- 3. www.globalethics.org
- 4. www.ethics.org

| EC8010      | VIDEO ANALYTICS | L | т | Ρ | С |
|-------------|-----------------|---|---|---|---|
|             |                 | 3 | 0 | 0 | 3 |
| OBJECTIVES: |                 |   |   |   |   |

#### The student should be made:

- To understand the need for video Analytics
- To understand the basic configuration of video analytics
- To understand the functional blocks of a video analytic system
- To get exposed to the various applications of video analytics

### UNIT I VIDEO ANALYTIC COMPONENTS

Need for Video Analytics-Overview of video Analytics- Foreground extraction- Feature extractionclassifier - Preprocessing- edge detection- smoothening- Feature space-PCA-FLD-SIFT features

### UNIT II FOREGROUND EXTRACTION

Background estimation- Averaging- Gaussian Mixture Model- Optical Flow based- Image Segmentation- Region growing- Region splitting-Morphological operations- erosion-Dilation-Tracking in a multiple camera environment

#### UNIT III CLASSIFIERS

Neural networks (back propagation) - Deep learning networks- Fuzzy Classifier- Bayesian classifier-HMM based classifier

- 9
- 9
- 9

#### ORO551

### **RENEWABLE ENERGY SOURCES**

#### **OBJECTIVES:**

- To get exposure on solar radiation and its environmental impact to power.
- To know about the various collectors used for storing solar energy.
- To know about the various applications in solar energy.
- To learn about the wind energy and biomass and its economic aspects.
- To know about geothermal energy with other energy sources.

### UNIT I PRINCIPLES OF SOLAR RADIATION

Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

### UNIT II SOLAR ENERGY COLLECTION

Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

### UNIT III SOLAR ENERGY STORAGE AND APPLICATIONS

Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applicationssolar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

### UNIT IV WIND ENERGY

Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria BIO-MASS: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C.Engine operation and economic aspects.

### UNIT V GEOTHERMAL ENERGY:

Resources, types of wells, methods of harnessing the energy, potential in India. OCEAN ENERGY: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations, principles of DEC.

### TOTAL: 45 PERIODS

### OUTCOMES:

- Understanding the physics of solar radiation.
- Ability to classify the solar energy collectors and methodologies of storing solar energy.
- Knowledge in applying solar energy in a useful way.
- Knowledge in wind energy and biomass with its economic aspects.
- Knowledge in capturing and applying other forms of energy sources like wind, biogas and geothermal energies.

### TEXT BOOKS:

- 1. Rai G.D., "Non-Conventional Energy Sources", Khanna Publishers, 2011
- 2. Twidell & Wier, "Renewable Energy Resources", CRC Press (Taylor & Francis), 2011

### **REFERENCES:**

- 1. Tiwari and Ghosal, "Renewable energy resources", Narosa Publishing House, 2007
- 2. Ramesh R & Kumar K.U , "Renewable Energy Technologies", Narosa Publishing House, 2004
- 3. Mittal K M , "Non-Conventional Energy Systems", Wheeler Publishing Co. Ltd, New Delhi, 2003
- 4. Kothari D.P, Singhal ., K.C., "Renewable energy sources and emerging technologies", P.H.I, New Delhi, 2010

5

LT PC 3 0 0 3

10

10

8

7

- ability to plan and design systems for storage, collection, transport, processing and disposal of municipal solid waste.
- knowledge on the issues on solid waste management from an integrated and holistic perspective, as well as in the local and international context.
- Design and operation of sanitary landfill.

### TEXTBOOKS:

- 1. William A. Worrell, P. Aarne Vesilind (2012) Solid Waste Engineering, Cengage Learning, 2012.
- 2. John Pitchel (2014), Waste Management Practices-Municipal, Hazardous and industrial CRC Press, Taylor and Francis, New York.

### **REFERENCES**:

- 1. CPHEEO (2014), "Manual on Municipal Solid waste management, Central Public Health and Environmental Engineering Organisation, Government of India, New Delhi.
- 2 George Tchobanoglous and FrankKreith (2002).Handbook of Solid waste management, McGraw Hill, New York.

| GE8077 | TOTAL QUALITY MANAGEMENT | LT PC |
|--------|--------------------------|-------|
|        |                          | 3003  |

### **OBJECTIVE:**

• To facilitate the understanding of Quality Management principles and process.

### UNIT I INTRODUCTION

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention.

### UNIT II TQM PRINCIPLES

Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

### UNIT III TQM TOOLS AND TECHNIQUES I

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

### UNIT IV TQM TOOLS AND TECHNIQUES II

Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

### UNIT V QUALITY MANAGEMENT SYSTEM

Introduction—Benefits of ISO Registration—ISO 9000 Series of Standards—Sector-Specific Standards—AS 9100, TS16949 and TL 9000-- ISO 9001 Requirements—Implementation— Documentation—Internal Audits—Registration--**ENVIRONMENTAL MANAGEMENT SYSTEM:** Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001—Benefits of EMS.

#### TOTAL: 45 PERIODS

9

9

9

#### OUTCOME:

• The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

### **TEXTBOOK:**

1. Dale H.Besterfiled, Carol B.Michna,Glen H. Besterfield, Mary B.Sacre,Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.

#### **REFERENCES**:

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8<sup>th</sup> Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 4. ISO9001-2015 standards

# GE8072FOUNDATION SKILLS IN INTEGRATED PRODUCTLTPCDEVELOPMENT303

#### **OBJECTIVES**:

- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer

9

9

9

### UNIT I FUNDAMENTALS OF PRODUCT DEVELOPMENT

**Global Trends Analysis and Product decision -** Social Trends - Technical Trends-Economical Trends - Environmental Trends - Political/Policy Trends - **Introduction to Product Development Methodologies and Management -** Overview of Products and Services - Types of Product Development - Overview of Product Development methodologies - Product Life Cycle – Product Development Planning and Management.

#### UNIT II REQUIREMENTS AND SYSTEM DESIGN

**Requirement Engineering -** Types of Requirements - Requirement Engineering - traceability Matrix and Analysis - Requirement Management - **System Design & Modeling -** Introduction to System Modeling - System Optimization - System Specification - Sub-System Design - Interface Design.

### UNIT III DESIGN AND TESTING

**Conceptualization -** Industrial Design and User Interface Design - Introduction to Concept generation Techniques – **Challenges in Integration of Engineering Disciplines** - Concept Screening & Evaluation - **Detailed Design -** Component Design and Verification – **Mechanical, Electronics and Software Subsystems** - High Level Design/Low Level Design of S/W Program - Types of Prototypes, S/W Testing- Hardware Schematic, Component

#### OUTCOME:

• Engineering students will acquire the basic knowledge of human rights.

#### **REFERENCES:**

- 1. Kapoor S.K., "Human Rights under International law and Indian Laws", Central Law Agency, Allahabad, 2014.
- 2. Chandra U., "Human Rights", Allahabad Law Agency, Allahabad, 2014.
- 3. Upendra Baxi, The Future of Human Rights, Oxford University Press, New Delhi.

#### GE8071

### DISASTER MANAGEMENT

#### LTPC 3 0 0 3

9

9

9

9

#### **OBJECTIVES:**

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability,
- disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential
- · disaster response in areas where they live, with due sensitivity

### UNIT I INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

### UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj

Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

### UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

### UNIT IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

#### UNIT V HYBRID SYSTEMS

Hybrid Systems -Neural Networks, Fuzzy Logic and Genetic -GA Based Weight Determination - LR-Type Fuzzy Numbers - Fuzzy Neuron - Fuzzy BP Architecture -Learning in Fuzzy BP- Inference by Fuzzy BP - Fuzzy ArtMap: A Brief Introduction - Soft Computing Tools - GA in Fuzzy Logic Controller Design - Fuzzy Logic Controller

#### TOTAL : PERIODS 45

#### **OUTCOMES:**

### Upon completion of this course, the students should be able to

- Apply suitable soft computing techniques for various applications.
- Integrate various soft computing techniques for complex problems.

#### **TEXT BOOKS:**

- N.P.Padhy, S.P.Simon, "Soft Computing with MATLAB Programming", Oxford 1. University Press, 2015.
- 2. S.N.Sivanandam, S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt. Ltd., 2nd Edition. 2011.
- 3. S.Rajasekaran, G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017.

#### **REFERENCES**:

- Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, "Neuro-Fuzzy and Soft 1. Computing", Prentice-Hall of India, 2002.
- 2. Kwang H.Lee, "First course on Fuzzy Theory and Applications", Springer, 2005.
- George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", 3. Prentice Hall, 1996.
- 4. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Addison Wesley, 2003.

#### GE8076 PROFESSIONAL ETHICS IN ENGINEERING LT P C

### **OBJECTIVES:**

To enable the students to create an awareness on Engineering Ethics and Human Values, • to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

#### UNIT I HUMAN VALUES

Morals, values and Ethics - Integrity - Work ethic - Service learning - Civic virtue - Respect for others - Living peacefully - Caring - Sharing - Honesty - Courage - Valuing time - Cooperation -Commitment - Empathy - Self confidence - Character - Spirituality - Introduction to Yoga and meditation for professional excellence and stress management.

#### UNIT II **ENGINEERING ETHICS**

Senses of 'Engineering Ethics' - Variety of moral issues - Types of inquiry - Moral dilemmas -Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories.

#### ENGINEERING AS SOCIAL EXPERIMENTATION UNIT III

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

# 10

3003

9

### UNIT I SIMULATION OF RANDOM VARIABLES RANDOM PROCESS

Generation of random numbers and sequence – Gaussian and uniform random numbers Correlated random sequences – Testing of random numbers generators – Stationary and uncorrelated noise – Goodness of fit test.

### UNIT II MODELING OF COMMUNICATION SYSTEMS

Radio frequency and optical sources – Analog and Digital signals – Communication channel and model – Free space channels – Multipath channel and discrete channel noise and interference.

### UNIT III ESTIMATION OF PERFORMANCE MEASURE FOR SIMULATION

Quality of estimator – Estimation of SNR – Probability density function and bit error rate – Monte Carlo method – Importance sampling method – Extreme value theory.

### UNIT IV SIMULATION AND MODELING METHODOLOGY

Simulation environment – Modeling considerations – Performance evaluation techniques – Error source simulation – Validation.

### UNIT V CASE STUDIES

Simulations of QAM digital radio link environment – Light wave communication link – Satellite system.

### **TOTAL: 45 PERIODS**

### OUTCOMES:

### At the end of the course , students would be able to

- Apply the constituents of a telecommunication systems.
- Analyze various modeling methodologies and simulation techniques.
- Estimate the performance measures of telecommunication systems.
- Apply system modeling in telecommunication.
- Demonstrate light wave communication and satellite communication systems.

### TEXTBOOKS:

- 1. Jeruchim MC Balaban P Sam K Shanmugam, "Simulation of communication Systems: Modeling, Methodology and Techniques", Plenum press, New York,2002
- 2. Jerry banks & John S Carson, "Discrete Event System Simulation", Prentice Hall of India, 1996

### **REFERENCES**:

- 1. Averill M Law, "Simulation Modeling and Analysis",McGraw-Hill Inc,2007 Geoffrey Gorden, "System Simulation",Prentice Hall of India,1992
- 2.Turin W, "Performance Analysis of Digital Communication Systems", Computer Science Press, New York,1990

## OCY751

### OBJECTIVES

• To make the student conversant with the water treatment methods including adsorption and oxidation process.

WASTE WATER TREATMENT

• To provide basic under standings about the requirements of water, its preliminary treatment.

### UNIT I WATER QUALITY AND PRELIMINARY TREATMENT

Water Quality-physical- chemical and biological parameters of water- water quality requirement - potable water standards -wastewater effluent standards -water quality indices. Water purification systems in natural systems- physical processes-chemical processes and biological processes-primary, secondary and tertiary treatment-Unit operations-unit processes. Mixing, clarification - sedimentation; Types; aeration and gas transfer – coagulation and flocculation, coagulation processes - stability of colloids - destabilization of colloids- transport of colloidal particles, clariflocculation.

9

9

9

9

9

L T P C 3 0 0 3

#### UNIT II INDUSTRIAL WATER TREATMENT

Filtration - size and shape characteristics of filtering media - sand filters hydraulics of filtration design considerations - radial, upflow, highrate and multimedia filters, pressure filter. Water softening - lime soda, zeolite and demineralization processes - industrial water treatment for boilers.

#### UNIT III CONVENTIONAL TREATMENT METHODS

Taste and odour control – adsorption – activated carbon treatment – removal of color – iron and manganese removal - aeration, oxidation, ion exchange and other methods - effects of fluorides fluoridation and defluoridation -desalination - corrosion prevention and control - factors influencing corrosion - Langelier index - corrosion control measures.

#### UNIT IV WASTEWATER TREATMENT

Wastewater treatment - pre and primary treatment - equalization neutralization - screening and grid removal - sedimentation - oil separation gas stripping of volatile organics - biological oxidation - lagoons and stabilization basins - aerated lagoons - activated sludge process trickling filtration – anaerobic decomposition.

#### UNIT V ADSORPTION AND OXIDATION PROCESSES

Chemical process - adsorption - theory of adsorption - ion exchange process - chemical oxidation advanced oxidation process sludge handling and \_ \_ disposal miscellaneous treatment processes.

### OUTCOMES

- Will have knowledge about adsorption and oxidation process.
- Will gain idea about various methods available for water treatment.
- Will appreciate the necessity of water and acquire knowledge of preliminary treatment.

### **TEXTBOOKS:**

- Metcalf and Eddy, "Wastewater Engineering", 4<sup>th</sup> ed., McGraw Hill Higher Edu., 2002. 1.
- W. Wesley Eckenfelder, Jr., "Industrial Water Pollution Control", 2<sup>nd</sup> Edn., McGraw Hill Inc., 2. 1989.

## **REFERENCES:**

- 1. S.P. Mahajan, "Pollution control in process industries", 27th Ed. Tata McGraw Hill Publishing Company Ltd., 2012.
- 2. M. Lancaster, "Green Chemistry: An Introductory Text", 2<sup>nd</sup> edition, RSC publishing, 2010.
- 3. C.S. Rao, "Environmental Pollution Control Engineering", New Age International, 2007.

9

9

# 9

### 9

### **TOTAL: 45 PERIODS**

#### **OCE551** AIR POLLUTION AND CONTROL ENGINEERING

### **OBJECTIVE:**

To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous • air pollutant and its emerging trends.

#### UNIT I INTRODUCTION

Structure and composition of Atmosphere - Definition, Scope and Scales of Air Pollution -Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards.

#### UNIT II **METEOROLOGY**

Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind profiles and stack plume patterns- Atmospheric Diffusion Theories - Dispersion models, Plume rise

#### UNIT III CONTROL OF PARTICULATE CONTAMINANTS

Factors affecting Selection of Control Equipment – Gas Particle Interaction – Working principle -Gravity Separators, Centrifugal separators Fabric filters, Particulate Scrubbers, Electrostatic Precipitators.

#### UNIT IV CONTROL OF GASEOUS CONTAMINANTS

Factors affecting Selection of Control Equipment - Working principle - absorption, Adsorption, condensation, Incineration, Bio filters – Process control and Monitoring.

#### UNIT V INDOOR AIR QUALITY MANAGEMENT

Sources, types and control of indoor air pollutants, sick building syndrome and Building related illness- Sources and Effects of Noise Pollution - Measurement - Standards - Control and Preventive measures.

### OUTCOMES:

The students completing the course will have

- An understanding of the nature and characteristics of air pollutants, noise pollution and • basic concepts of air quality management
- Ability to identify, formulate and solve air and noise pollution problems
- Ability to design stacks and particulate air pollution control devices to meet applicable standards.
- Ability to select control equipments.
- Ability to ensure quality, control and preventive measures. •

### **TEXTBOOKS:**

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, "Air Pollution Control Engineering", Tokyo, springer science + science media LLC,2004.
- 2. Noel de Nevers, "Air Pollution Control Engineering", Waveland press, Inc 2017.
- 3. Anjanevulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002.

### **REFERENCES:**

- 1. David H.F. Liu, Bela G. Liptak, "Air Pollution", Lweis Publishers, 2000.
- 2. Arthur C. Stern, "Air Pollution (Vol.I Vol.VIII)", Academic Press, 2006.
- 3. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc, 2000.
- 4. M.N Rao and HVN Rao, "Air Pollution", Tata Mcgraw Hill Publishing Company limited, 2007.
- 5. C.S.Rao, "Environmental Pollution Control Engineering", New Age International(P) Limited Publishers.2006.

7

10

11

#### **TOTAL: 45 PERIODS**

# 6

#### **OMD551**

### **BASICS OF BIOMEDICAL INSTRUMENTATION**

#### **OBJECTIVES:**

- To study about the different bio potential and its propagation
- To understand the different types of electrodes and its placement for various recording •
- To study the design of bio amplifier for various physiological recording •
- To learn the different measurement techniques for non-physiological parameters.
- To familiarize the different biochemical measurements.

#### **CO-PO MAPPING:**

| Course  | PO1 | PO2          | PO3 | PO4 | PO5          | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 |
|---------|-----|--------------|-----|-----|--------------|-----|-----|-----|-----|------|------|
| Outcome |     |              |     |     |              |     |     |     |     |      |      |
| CO1     |     |              |     | ✓   |              | ✓   |     |     |     |      |      |
| CO2     |     |              |     | ✓   |              | ✓   |     |     |     |      |      |
| CO3     | ✓   | $\checkmark$ | ~   | ~   | $\checkmark$ | ~   |     |     |     |      |      |
| CO4     |     |              | ✓   | ✓   | $\checkmark$ | ✓   |     |     |     |      |      |
| CO5     |     |              | ~   | ~   | $\checkmark$ | ~   |     |     |     |      |      |

#### **BIO POTENTIAL GENERATION AND ELECTRODES TYPES** UNIT I

Origin of bio potential and its propagation. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes

#### **BIOSIGNAL CHARACTERISTICS AND ELECTRODECONFIGURATIONS** UNIT II 9

Biosignals characteristics - frequency and amplitude ranges. ECG - Einthoven's triangle, standard 12 lead system. EEG - 10-20 electrode system, unipolar, bipolar and average mode. EMG- unipolar and bipolar mode.

#### SIGNAL CONDITIONING CIRCUITS UNIT III

Need for bio-amplifier - differential bio-amplifier, Impedance matching circuit, isolation amplifiers, Power line interference, Right leg driven ECG amplifier, Band pass filtering

#### MEASUREMENT OF NON-ELECTRICALPARAMETERS UNIT IV

Temperature, respiration rate and pulse rate measurements. Blood Pressure: indirect methods -Auscultatory method, direct methods: electronic manometer, Systolic, diastolic pressure, Blood flow and cardiac output measurement: Indicator dilution, and dye dilution method, ultrasound blood flow measurement.

#### UNIT V **BIO-CHEMICAL MEASUREMENT**

Blood gas analyzers and Non-Invasive monitoring, colorimeter, Sodium Potassium Analyser, spectrophotometer, blood cell counter, auto analyzer (simplified schematic description).

### OUTCOMES:

### At the end of the course, the student should be able to:

- CO1: To Learn the different bio potential and its propagation.
- CO2: To get Familiarize the different electrode placement for various physiological recordina
- CO3: Students will be able design bio amplifier for various physiological recording
- CO4: Students will understand various technique non electrical physiogical measurements
- CO5: Understand the different biochemical measurements

### **TEXT BOOKS:**

- 1. Leslie Cromwell, "Biomedical Instrumentation and measurement", Prentice hall of India, New Delhi, 2007.
- 2. John G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 2004. (Units I, II & V)

#### **TOTAL: 45 PERIODS**

9

10

8

q

### **REFERENCES:**

- 1. Myer Kutz, "Standard Handbook of Biomedical Engineering and Design", McGraw Hill Publisher, 2003.
- 2. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 2003.(Units II & IV)
- 3. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", Pearson Education, 2004.

### **OBT552**

### **BASICS OF BIOINFORMATICS**

#### **BIOLOGICAL DATA ACQUISITION** UNIT I

The form of biological information. Retrieval methods for DNA sequence, protein sequence and protein structure information

#### UNIT II DATABASES

Format and Annotation: Conventions for database indexing and specification of search terms, Common sequence file formats. Annotated sequence databases - primary sequence databases, protein sequence and structure databases, Organism specific databases

#### DATA PROCESSING UNIT III

Data – Access, Retrieval and Submission: Standard search engines; Data retrieval tools – Entrez, DBGET and SRS; Submission of (new and revised) data; Sequence Similarity Searches: Localversus global. Distance metrics. Similarity and homology. Scoring matrices.

#### UNIT IV METHODS OF ANALYSIS

Dynamic programming algorithms, Needleman-wunsch and Smith-waterman, Heuristic Methods of sequence alignment, FASTA, and PSI BLAST. Multiple Sequence Alignment and software tools for pairwise and multiple sequence alignment

#### UNIT V **APPLICATIONS**

Genome Annotation and Gene Prediction; ORF finding; Phylogenetic Analysis : Comparative genomics, orthologs, paralogs. Genome analysis - Genome annotation

### **TOTAL: 45 PERIODS**

### **TEXT BOOKS:**

- 1. Introduction to Bioinformatics by Arthur K. Lesk, Oxford University Press.
- 2. Algorithms on Strings, Trees and Sequences by Dan Gusfield, Cambridge University Press.
- 3. Biological Sequence Analysis Probabilistic Models of proteins and nucleic acids by Durbin, S.Eddy, A.Krogh, G.Mitchison.
- 4. Bioinformatics Sequence and Genome Analysis by David W. Mount, Cold Spring Harbor Laboratory Press.
- 5. Beginning Perl for Bioinformatics: An introduction to Perl for Biologists by James Tindall, O'Reilley Media.

### REFERENCE

1. Bioinformatics The Machine Learning Approach by Pierre Baldi and Soren Brunak.

9

9

9

LTPC

3003

9